

© 2024 Nagravision SA / All Rights Reserved Page 1 of 21
For Public Release

1

Pendzl Smart Contracts Security
Code Review

Technical Report

Abax Finance

19 July 2024
Version: 2.0

Kudelski Security – Nagravision Sàrl

Corporate Headquarters
Kudelski Security – Nagravision Sàrl
Route de Genève, 22-24
1033 Cheseaux sur Lausanne
Switzerland

For Public Release

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 2 of 21
For Public Release

DOCUMENT PROPERTIES

Version: 2.0

File Name: Kudelski_Security_Abax_Finance_Pendzl_Secure_Code_Review_2.0.pdf

Publication Date: 19 July 2024

Confidentiality Level: For Public Release

Document Status: Approved

Copyright Notice
Kudelski Security, a business unit of Nagravision Sàrl, is a member of the Kudelski Group of Companies.
This document is the intellectual property of Kudelski Security and contains confidential and privileged
information. The reproduction, modification, or communication to third parties (or to other than the addressee)
of any part of this document is strictly prohibited without the prior written consent from Nagravision Sàrl.

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 3 of 21
For Public Release

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY ... 4

2. PROJECT SUMMARY .. 6

2.1 Context .. 6

2.2 Scope .. 6

2.3 Remarks .. 6

2.4 Additional Note .. 7

3. TECHNICAL DETAILS OF SECURITY FINDINGS ... 8

3.1 KS–PNZ–F–1 Potential Underflow in Balance Update ... 9

3.2 KS–PNZ–F–2 Potential Integer Overflow in _decimals_offset Usage 10

4. OBSERVATIONS .. 11

4.1 KS–PNZ–O–1 Zero-Address Not Checked .. 12

4.2 KS–PNZ–O–2 TODO Still Present in the Code .. 12

4.3 KS–PNZ–O–3 Subtractions Not Performed With the Function checked_sub 12

4.4 KS–PNZ–O–4 Lack of Access Control in Pausable System 13

4.5 KS–PNZ–O–5 ink::env::debug_println! Still Present in The Code 13

4.6 KS–PNZ–O–6 Potential Reentrancy Vulnerability .. 13

4.7 KS–PNZ–O–7 Lack of Functionality to Revoke Allowances in PSP22 Contract . 14

4.8 KS–PNZ–O–8 Lack of Input Validation in Ownable Library 15

4.9 KS–PNZ–O–9 Lack of Input Validation in PSP22 Library 15

5. METHODOLOGY .. 16

5.1 Kickoff .. 16

5.2 Ramp-up .. 16

5.3 Review ... 16

5.4 Smart Contracts ... 17

5.5 Reporting ... 17

5.6 Verify ... 17

6. VULNERABILITY SCORING SYSTEM ... 18

7. CONCLUSION .. 20

DOCUMENT RECIPIENTS ... 21

KUDELSKI SECURITY CONTACTS ... 21

DOCUMENT HISTORY .. 21

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 4 of 21
For Public Release

1. EXECUTIVE SUMMARY

Abax Finance (“the Client”) engaged Kudelski Security (“Kudelski”, “we”) to perform to perform
a Secure Code Review of library Pendzl which aims to provide standard for ink! smart contract
implementation.

The assessment was conducted remotely by the Kudelski Security Team.

The review took place between 08 April 2024 and 21 June 2024, and focused on the following
objectives:

 Provide the customer with an assessment of their overall security posture and any risks
that were discovered.

 To provide a professional opinion on the maturity, adequacy, and efficiency of the
security measures that are in place.

 To identify potential issues and include improvement recommendations based on the
result of our tests.

A second review was conducted between 12 July 2024 and 18 July 2024 after the
modifications performed by the Client.

Key Findings

The following are the major themes and issues identified during the testing period.

These, along with other items, within the findings section, should be prioritized for remediation
to reduce to the risk they pose.

 Potential Underflow in Balance Update

 Lack of Input validation in ownable library

 Lack of Input validation in PSP22 Library

Findings ranked by severity.

0 1 2 3 4 5 6 7 8 9 10

Informational

Low

Medium

High

Critical

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 5 of 21
For Public Release

Status of Findings after Re-review

A second review was conducted after the modifications performed by the Client. A finding is
set as resolved if the Client did modify the implementation and we considered the fix to be
correct. A finding is set to acknowledged if either the Client decided to accept the risk, or the
mitigation is difficult to impossible to implement with the existing tools and resources. Finally,
a finding is set as open if nothing was implemented or communicated by the client between
the two code reviews.

Overview of findings and their status

0 1 2 3 4 5 6 7 8 9 10

Informational

Low

Medium

High

Critical

Acknowledged Resolved Open Informational

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 6 of 21
For Public Release

2. PROJECT SUMMARY

This report summarizes the engagement, tests performed, and findings. It also contains
detailed descriptions of the discovered vulnerabilities, steps the Kudelski Security Team took
to identify and validate each issue, as well as any applicable recommendations for
remediation.

2.1 Context

Pendzl is a library for smart contract development. It provides standard contracts for Polkadot
eco-system. Importantly, this standard library includes the PSP22 standard for non-fungible
token and the PSP34 standard for fungible token.

2.2 Scope

The scope consisted in specific ink! files and folders located at:

 Commit hash: b9333cbb1bc03dff3433ec20e36570b72449c024

 Source code repository : https://github.com/Nradko/Pendzl.git

The files in scope are all ink! files (.rs) in the following folders:

 /contracts

 /lang

Follow-up

After the initial report, Abax Finance addressed or acknowledged the vulnerabilities and
weaknesses in the following codebase revision:

 Commit hash: a26a38774f7517df012e944b85744f948e41aaa8

 Source code repository : https://github.com/Pendzl/pendzl/tree/main

We reviewed the changes between the two commits and updated the status of the findings.

2.3 Remarks

During the code review, the following positive observations were noted regarding the scope of
the engagement:

 The developers have made a careful and in-depth analysis of their project.

 Tests were also provided as part of the project, which is convenient for better
understanding how the library works and useful for elaborating scenarios and
validating findings.

 Finally, we had regular and very enriching technical exchanges on various topics.

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 7 of 21
For Public Release

2.4 Additional Note

It is important to notice that, although we did our best in our analysis, no code audit
assessment is per se guarantee of absence of vulnerabilities. Our effort was constrained by
resource and time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both the ease
of exploitability and the potential damage caused by an exploit.

While assessing the severity of the findings, we considered the impact, ease of exploitability,
and the probability of attack. This is a solid baseline for severity determination. Information
about the severity ratings can be found in Chapter Vulnerability Scoring System of this
document.

Additionally, as Pendzl is a library aiming to improve standardization of ink! smart contract
implementation, we also highlighted some observations of what the library provides or not to
the users in terms of security.

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 8 of 21
For Public Release

3. TECHNICAL DETAILS OF SECURITY FINDINGS

This chapter provides detailed information on each of the findings, including methods of
discovery, explanation of severity determination, recommendations, and applicable
references.

The following table provides an overview of the findings.

SEVERITY TITLE STATUS

KS–PNZ–F–1 Medium Potential Underflow in Balance Update Resolved

KS–PNZ–F–2 Low Potential Integer Overflow in
_decimals_offset Usage

Acknowledged

Findings overview.

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 9 of 21
For Public Release

3.1 KS–PNZ–F–1 Potential Underflow in Balance Update

Severity Impact Likelihood Status

Medium High Low Resolved

Description

The Pendzl library implements the PSP34 standard for non-fungible tokens. In this standard
implementation, the owner’s balance of a token is decremented without checking if the balance
is zero. This operation could potentially lead to an underflow if the balance is already zero. An
underflow in this context would mean that the balance becomes a very large number, which
could lead to incorrect behavior in the token contract.

Impact

If an underflow occurs, it could lead to serious issues such as incorrect token balances being
reported, tokens being minted incorrectly, or other parts of the contract behaving
unexpectedly. This could potentially be exploited by an attacker to gain an unfair advantage
or disrupt the operation of the contract.

Evidence

 let balance = self.owned_tokens_count.get(from).unwrap_or(0);

self.owned_tokens_count.insert(from, &(balance – 1));

let total_suply = self.total_supply.get().unwrap();

self.total_supply.set(&(total_suply – 1));

implementation.rs. Uncheked substaction could result in underflow.

Affected Resources

 Pendzl/contracts/src/psp34/implementation.rs, lines 104-08

Recommendation

We recommend using checked arithmetic operations to prevent any risks of underflows. In
ink!, you can use the checked_sub method, which returns None if the operation would cause
an underflow. Additionally, in ink! smart contract development, the overflow/underflow
protection is enabled by default, we recommend ink! builder to keep this enable and disable it
only if there is not only other option.

References

 [1] checked_sub function:

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 10 of 21
For Public Release

3.2 KS–PNZ–F–2 Potential Integer Overflow in _decimals_offset Usage

Severity Impact Likelihood Status

Low Medium Low Acknowledged

Description

The _decimals_offset function is used to calculate an offset that is then used as an exponent
in a power of 10 operation. If the value returned by _decimals_offset is greater than 39, this
can lead to an integer overflow. This is because the u128 type in ink!, which is used to store

the result of the power operation, can hold a maximum value of 𝟐𝟏𝟐𝟖 − 𝟏, which is
approximately 𝟑. 𝟒 ∗ 𝟏𝟎𝟑𝟖. This means that If _decimals_offset is equal to 40 or more, the

result of the power operation will be 𝟏𝟎𝟒𝟎 or greater, which exceeds the maximum value that
a u128 can hold.

Impact

An integer overflow can lead to unexpected behavior, in this case if the value wraps around
and start from zero again. This can lead to incorrect token balance calculations, which is
especially problematic in a financial or blockchain context where accurate calculations are
crucial.

Evidence

 let decimals_offset = 10_u128.pow(self._decimals_offset() as u32);

…

let decimals_offset = 10_u128.pow(self._decimals_offset() as u32);

implementation.rs. Unchecked power could result in Overflow.

Affected Resources

 Pendzl/contracts/src/token/psp22/extensions/vault/implementation.rs, lines
117 and 135

Recommendation

To mitigate this risk, it is recommended to add a check before the power operation to ensure
that the value returned by _decimals_offset is not greater than 39. If it is, an error should be
returned to prevent the overflow. In ink!, we advise developers to maintain the
overflow/underflow protection enable.

It is important to highlight that, the developers added after the initial report a usage comment
for the Pendzl library users to prevent this risk.

References

N/A

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 11 of 21
For Public Release

4. OBSERVATIONS

This chapter contains additional observations that are not directly related to the security of the
code, and as such have no severity rating or remediation status summary. These observations
are either minor remarks regarding good practice or design choices or related to
implementation and performance. These items do not need to be remediated for what
concerns security, but where applicable we include recommendations.

SEVERITY TITLE STATUS

KS–PNZ–O–1 Informational Zero-Address not Checked Informational

KS–PNZ–O–2 Informational TODO Still Present in the Code Resolved

KS–PNZ–O–3 Informational Subtractions Not Performed With the
Function checked_sub

Resolved

KS–PNZ–O–4 Informational Lack of Access Control in Pausable
System

Informational

KS–PNZ–O–5 Informational ink::env::debug_println! Still
Present in the Code

Resolved

KS–PNZ–O–6 Informational Potential Reentrancy Vulnerability Informational

KS–PNZ–O–7 Informational Absence of Functionality to Revoke
Allowances in PSP22 Token Contract

Informational

KS–PNZ–O–8 Informational Lack of Input validation in ownable library Informational

KS–PNZ–O–9 Informational Lack of Input Validation in PSP22 Library Informational

Observations overview.

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 12 of 21
For Public Release

4.1 KS–PNZ–O–1 Zero-Address Not Checked

Description

We observed that the zero-address verifications were not done, this means that a role can be
assigned to the zero-address or token could be transferred to the zero-address, which has a
secret key publicly known.

This is a choice was made by the developers who believe that it is responsibility stands to the
user to know assigned a role or send token to the zero-address. It is important to highlight that
in OpenZeppelin, the standard library for Ethereum smart contracts, the zero-address
verification is enabled by default and users can choose to disable it, while in the case of Pendzl
the opposite choice was made.

Affected Resources

 This is a general observation for the overall Pendzl library

Recommendation

As this a choice of the Pendzl developers, the only recommendation is to explicitly mention
this in the guideline of the standard library.

4.2 KS–PNZ–O–2 TODO Still Present in the Code

Description

The codebase contains several TODO comments indicating unfinished tasks or features that
need to be implemented. While TODO comments can be useful for marking areas of the code
that need further work, leaving them unresolved in the production code result in to unexpected
behavior or incomplete functionality.

Affected Resources

 Pendzl/contracts/src/finance/general_vest/general_vest_types.rs lines 115

Recommendation

We recommend reviewing all TODO comments in the codebase and resolving them as soon
as possible. If the tasks they represent are not immediately actionable, consider tracking them
in a project management tool or issue tracker instead of leaving them in the code. This will
help ensure that all tasks are accounted for and can be properly prioritized and tracked. If a
TODO is no longer relevant, remove the comment to avoid confusion.

4.3 KS–PNZ–O–3 Subtractions Not Performed With the Function
checked_sub

Description

There are subtraction operations that are performed without using the checked_sub method.

Affected Resources

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 13 of 21
For Public Release

 Pendzl/contracts/src/finance/general_vest/implementation.rs, lines 93 and 95

Recommendation

Even though, there are no risk of underflow in these specific cases, it is still recommended to
use the checked_sub method for subtraction operations.

4.4 KS–PNZ–O–4 Lack of Access Control in Pausable System

Description

The Pendzl library proposes standard and default methods to pause and unpause a system,
specifically _pause_default_impl and _unpause_default_impl. However, there doesn't
appear to be any access control mechanisms in place to restrict who can call these
methods. Depending on the context and use case of this system, this could potentially be a
security issue. If any account can pause or unpause the system, it could lead to misuse or
disruption of the system's intended operation.

Affected Resources

 Pendzl/contracts/src/security/pausable/implementation.rs

Recommendation

Implement access control mechanisms to ensure that only authorized accounts can pause or
unpause the system. This could be done by adding checks in the _pause_default_impl and
_unpause_default_impl methods to verify the caller's permissions before proceeding with the
operation. The specifics of this implementation would depend on the broader context of your
application, but it could involve checking if the caller's account is in a list of authorized
accounts, or if the caller has a certain role or privilege level. This would help to prevent
unauthorized use of these critical operations and enhance the security of your system.

4.5 KS–PNZ–O–5 ink::env::debug_println! Still Present in The Code

Description

The Pendzl library implementation code still contains debugging print messages.

Affected Resources

 src/token/psp22/extensions/vault/implementation.rs

Recommendation

Debugging messages needs to be suppressed before releasing the code for production.

4.6 KS–PNZ–O–6 Potential Reentrancy Vulnerability

Description

Reentrancy is a vulnerability that occurs when a function can be interrupted during execution and
called again before the first call is finished. This can lead to unexpected behavior, such as funds
being withdrawn multiple times in a single transaction. In the context of this code, the

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 14 of 21
For Public Release

_withdraw_default_impl and _deposit_default_impl functions are potentially vulnerable to
reentrancy attacks. Both functions call self._asset().transfer or
self._asset().transfer_from (which are external calls) and then change the state of the contract
with self._mint_to(receiver, shares) or self._burn_from(owner, shares). If the transfer
or transfer_from functions are compromised, they could call back into _withdraw_default_impl
or _deposit_default_impl and reenter the function before the state changes have been committed.

Affected Resources

 Pendzl-main/contracts/src/token/psp22/extensions/vault/implementation.rs

Recommendation

We did not consider this to be a direct security threat as ink! developers need to set the
CallFlags::ALLOW_REENTRY flag to allow reentry in a smart contract. This flag is not set in the
Pendzl library. If a user sets the reentry flag, they need to mitigate the risk of reentry,
consider using the Checks-Effects-Interactions pattern, where you perform any external calls
or transfers last, after all internal state has been updated.

4.7 KS–PNZ–O–7 Lack of Functionality to Revoke Allowances in PSP22
Contract

Description

The PSP22 token contract includes functions to approve (_approve_default_impl),
decrease (_decrease_allowance_from_to_default_impl), and increase
(_increase_allowance_from_to_default_impl) allowances. However, it lacks a function to
revoke the allowances. User can use _approve_default_impl or
_decrease_allowance_from_to_default_impl to set new amount to 0. However, there should
be an option for the developers to set one or all previously approved allowances to zero
through a _revoke_Allowance or _revoke_All_Allowances function.

If a user sets an allowance for a malicious spender and later receives funds into their account,
the spender could potentially drain these funds based on the previously set allowance. This
could occur even if the user did not intend for the spender to have access to these new funds.

Affected Resources

 Pendzl-main/contracts/src/token/psp22/implementation.rs, lines 256 and 302

Recommendation

Add a function to the contract to allow users to revoke allowances. This could be a
_revoke_Allowance function that sets the allowance for a specific spender to zero. This would
give users more control over their allowances and help to prevent unexpected loss of funds.
Additionally, consider implementing a _revoke_All_Allowances function that sets all
allowances to zero for further control and security. Interesting literature related to this subject
can be found with the following links:

 Token Allowance

 Revoking Token Allowance.

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 15 of 21
For Public Release

4.8 KS–PNZ–O–8 Lack of Input Validation in Ownable Library

Description

In the provided Pendzl library, there is folder named ownable, which is a library providing
standard approach for ownership operation of a contract, there are several functions that could
benefit from input validation to ensure the integrity and security of the contract.

Affected Resources

 Pendzl-main/contracts/src/access/ownable/implementation.rs, lines 1 and 81

Recommendation

We recommended to implement input sanitization in these functions by default. For example,
OpenZeppelin standard library validates that the provided address is not a zero-address and
is not the same as the current owner's address. This would prevent the contract from being
initialized with no owner, prevent the contract owner from being set to an invalid address, and
prevent unnecessary ownership transfers.

Mature standard libraries for smart contracts standard application, such as OpenZeppelin for
solidity, includes some input validation by default, that can disable by users.

4.9 KS–PNZ–O–9 Lack of Input Validation in PSP22 Library

Description

In the provided ink! implementation of the PSP22 token standard, there are several functions
that could benefit from inputs validation to ensure the integrity and security of the contract.

Affected Resources

 Pendzl-main/contracts/src/token/psp22/implementation.rs, lines 1 and 302

Recommendation

We recommend adding standard input validation to these functions. For example, this could
be done with simple conditional checks at the beginning of each function. If the "to" address
is zero or the transfer amount is zero, the function should fail and return an error.

More mature standard smart contract libraries, such as OpenZeppelin for Solidity, include
some input validation by default, which can be disabled by the user.

References

 [1] OpenZeppelin ERC20 smart contract

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 16 of 21
For Public Release

5. METHODOLOGY

For this engagement, Kudelski Security used a methodology that is described at a high level
in this chapter. This is broken up into the following phases.

5.1 Kickoff

The Kudelski Security Team set up a kick-off meeting where project stakeholders were
gathered to discuss the project as well as the responsibilities of participants. During this
meeting, we verified the scope of the engagement and discussed the project activities.

5.2 Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular project.
This included the steps required for gaining familiarity with the codebase and technological
innovations utilized.

5.3 Review

The review phase is where most of the work on the engagement was performed. In this
phase we have analyzed the project for flaws and issues that could impact the security
posture. The review for this project was performed using manual methods and utilizing the
experience of the reviewer. No dynamic testing was performed, only the use of custom-built
scripts and tools was used to assist the reviewer during the testing. We discuss our
methodology in more detail in the following subsections.

Code Review

Kudelski Security Team reviewed the code within the project utilizing an appropriate IDE.
During every review, the team spends considerable time working with the client to determine
correct and expected functionality, business logic, and content, to ensure that findings
incorporate this business logic into each description and impact. Following this discovery
phase, the team works through the following categories:

• authentication (e.g. A07:2021, CWE-306)

• authorization and access control (e.g. A01:2021, CWE-862)

• auditing and logging (e.g. A09:2021)

• injection and tampering (e.g. A03:2021, CWE-20)

• configuration issues (e.g. A05:2021, CWE-798)

• logic flaws (e.g. A04:2021, CWE-190)

• cryptography (e.g. A02:2021)

Kickoff Ramp-up Review Report Verify

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 17 of 21
For Public Release

These categories incorporate common weaknesses and vulnerabilities such as the OWASP
Top 10 and MITRE Top 25.

5.4 Smart Contracts

We reviewed the smart contracts, checking for additional specific issues that can arise such
as:

 assessment of smart contract admin centralization

 reentrancy attacks and external contracts interactions

 verification of compliance with existing standards such as ERC20 or PSP34

 unsafe arithmetic operations such as overflow and underflow verification dependance
on timestamp

 access control verification to ensure that only authorized users can call sensitive
functions.

5.5 Reporting

Kudelski Security delivered to Abax Finance a preliminary report in PDF format that contained
an executive summary, technical details, and observations about the project.

In the report we not only point out security issues identified but also observations for
improvement. The findings are categorized into several buckets, according to their overall
severity: Critical, High, Medium, Low.

Observations are considered to be Informational. Observations can also consist of code
review, issues identified during the code review that are not security related, but are general
best practices and steps, that can be taken to lower the attack surface of the project.

The technical details are aimed more at developers, describing the issues, the severity ranking
and recommendations for mitigation.

5.6 Verify

After the preliminary findings have been delivered, we verify the fixes applied by Abax Finance.
After these fixes were verified, we updated the status of the finding in the report.

The output of this phase is the final report with any mitigated findings noted.

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 18 of 21
For Public Release

6. VULNERABILITY SCORING SYSTEM

Kudelski Security utilizes a custom approach when computing the vulnerability score, based
primarily on the Impact of the vulnerability and Likelihood of an attack.

Each metric is assigned a ranking of either low, medium or high, based on the criteria defined
below. The overall severity score is then computed as described in the next section.

Severity

Severity is the overall score of the finding, weakness or vulnerability as computed from Impact
and Likelihood. Other factors, such as availability of tools and exploits, number of instances
of the vulnerability and ease of exploitation might also be taken into account when computing
the final severity score.

 IMPACT

LIKELIHOOD

LOW

MEDIUM

HIGH

HIGH MEDIUM HIGH HIGH

MEDIUM LOW MEDIUM HIGH

LOW LOW LOW MEDIUM

Compute overall severity from Impact and Likelihood. The final severity factor might vary depending on a
project's specific context and risk factors.

 Critical The identified issue may be immediately exploitable, causing a strong and
major negative impact system-wide. They should be urgently remediated or mitigated.

 High The identified issue may be directly exploitable causing an immediate negative
impact on the users, data, and availability of the system for multiple users.

 Medium The identified issue is not directly exploitable but combined with other
vulnerabilities may allow for exploitation of the system or exploitation may affect
singular users. These findings may also increase in severity in the future as techniques
evolve.

 Low The identified issue is not directly exploitable but raises the attack surface of the
system. This may be through leaking information that an attacker can use to increase
the accuracy of their attacks.

 Informational findings are best practice steps that can be used to harden the
application and improve processes. Informational findings are not assigned a severity
score and are classified as Informational instead.

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 19 of 21
For Public Release

Impact

The overall effect of the vulnerability against the system or organization based on the areas
of concern or affected components discussed with the client during the scoping of the
engagement.

 High The vulnerability has a severe effect on the company and systems or has an
affect within one of the primary areas of concern noted by the client.

 Medium It is reasonable to assume that the vulnerability would have a measurable
effect on the company and systems that may cause minor financial or reputational
damage.

 Low There is little to no affect from the vulnerability being compromised. These
vulnerabilities could lead to complex attacks or create footholds used in more severe
attacks.

Likelihood

The likelihood of an attacker discovering a vulnerability, exploiting it, and obtaining a foothold
varies based on a variety of factors including compensating controls, location of the
application, availability of commonly used exploits, difficulty of exploitation and institutional
knowledge.

 High It is extremely likely that this vulnerability will be discovered and abused.

 Medium It is likely that this vulnerability will be discovered and abused by a skilled
attacker.

 Low It is unlikely that this vulnerability will be discovered or abused when discovered.

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 20 of 21
For Public Release

7. CONCLUSION

The objective of this Secure Code Review was to evaluate whether there were any vulnerabili-
ties that would put the Pendzl library or its users at risk.

The Kudelski Security Team identified 2 security issues: 1 medium risk and 1 lower risks. On
average, the effort needed to mitigate these risks is estimated as low.

In order to mitigate the risks posed by this engagement’s findings, the Kudelski Security Team
recommends applying the following best practices:

 Use checked (for example checked_sub) for all arithmetic operations

 Inputs sanitization

 Write explicit documentation about what the Pendzl library provide or not.

Kudelski Security remains at your disposal should you have any questions or need further
assistance.

Kudelski Security would like to thank Abax Finance for their trust, help and support over the
course of this engagement and is looking forward to cooperating in the future.

Abax Finance | Pendzl Smart Contracts Security Code Review
19 July 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 21 of 21
For Public Release

DOCUMENT RECIPIENTS

NAME POSITION CONTACT INFORMATION

Konrad Wierzbik Co-founder konrad.wierzbik@gmail.com

Łukasz Łakomy Co-founder lukasz.jan.lakomy@gmail.com

KUDELSKI SECURITY CONTACTS

NAME POSITION CONTACT INFORMATION

Jean-Sebastien
Nahon

Application and
Blockchain Security
Practice Manager

jean-sebastien.nahon@kudelskisecurity.com

Ana Acero Project Manager/
Operations
Coordinator

ana.acero@kudelskisecurity.com

DOCUMENT HISTORY

VERSION DATE STATUS/ COMMENTS

1.0 21 June 2024 Findings status to Open

1.1 18 July 2024 Re-review (Finding status update)

2.0 19 July 2024 Public release version

